
 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 1 

Self-Teach Exercises 1-12 
Turtle Python 

The exercises below are intended to get you started using Turtle Graphics programming, and to take 

you fairly systematically through some of the basic facilities that are provided.  If you have difficulty 

getting to grips with any of the concepts as they are introduced, you might find it helpful to load and 

run some of the illustrative programs that are available through the “Help” menu.  Note, however, 

that a few of these illustrative programs are quite complex, so stick to the ones that are at your current 

level. 

Before You Start the Exercises 
By default, the Turtle System opens up in the programming language Turtle Pascal.  These exercises 

are for Turtle Python, so the first thing you need to do is go to the “LANGUAGE” menu and select 

“Turtle Python”. 

Now go to the “Help” menu, select the first of the Illustrative programs (called “Simple drawing with 

pauses”) and see this appear in the Programming Area at the left of the screen.  Click on the RUN 

button and watch what happens. Having done this, read through the section on “The Program” so that 

you understand what’s going on, and then return back here. 

Exercise 1 
If a program is currently loaded into the system, select “New program” from the “File” menu to clear 

it.  Make sure the flashing cursor is in the Programming Area at the left of the screen (click there if 

necessary), and type in the following program: 

# tgpx1 

 
def main(): 

  forward(200) 

  right(120) 

  forward(200) 

Note that program examples from this file can be “cut and pasted” into the system if you have the file in 

electronic form.  To try this, drag the mouse over the example above so that all six lines (within this file) 

are highlighted. Then press CTRL-C (i.e. hold down the “Ctrl” key and press “C”) to copy the selection into 

the Clipboard.  Now go into the Turtle System, click in the part of the Programming Area where you want 

the selected lines to be pasted (line 1 if no program exists yet), and then either select “Paste insert” from 

the Edit menu, or press CTRL-V.  It’s worth getting used to using CTRL-V and CTRL-C for these operations, 

because they’re standard in nearly all Windows applications and are quicker than using the menus. 

Then press on the RUN button to run it.  You should see two sides of an equilateral triangle appear on 

the Canvas (the square area on the right of the screen where the drawing is done). 

Now add “statements” (i.e. Turtle Phython commands) to the program to complete the equilateral 

triangle.  RUN the new program to check that it works. 

Next, edit the program (i.e. add, delete, or modify statements) so the same triangle is drawn, but this 

time with a horizontal base (RUN it to check, as usual).  Then edit it again so that, in addition to the 

triangle, it draws a red horizontal line exactly below the base, at a distance of 100 units (note – here 

http://www.turtle.ox.ac.uk/


 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 2 

you will need the colour command, and also the penup/pendown commands, and you may want to 

use right and/or back, but do not at this stage use movexy, drawxy or setxy etc.).  If you want to 

know what commands are available, you might find the “QuickHelp 2” tab at the bottom of the screen 

useful. 

Save your program, calling it TGYX1.TGY, within an appropriately named directory on your computer 

or the network that you are using (e.g. you could use Windows Explorer to create a “Turtle” directory 

if you don’t have one already).  Having saved your program, unless you’ve already laid it out very 

neatly, you might like to try selecting the “auto-format” option from the “Edit” menu.  If this gives a 

better result, save the neatened version in place of the old one.  (It’s a good idea to use the “auto-

format” option whenever you’ve done a major edit on the structure of your program, because this 

keeps all the indenting in order, but always save the program first in case you don’t like the result for 

any reason. 

Now choose “New program” from the “File” menu before starting the next exercise.  (If you like, you 

could then try reloading the program you’ve saved, just to check out the loading and saving 

operations.) 

Exercise 2 
Write from scratch a program to draw a face, enclosed in a black circle (radius 300), with small green 

blots (i.e. filled circles) for eyes, a thick blue triangle for a nose, and a red smiling mouth.  The simplest 

way of making the mouth is to draw a red blot, and then to draw a white blot slightly higher, leaving 

a crescent of red (but if you do it this way, you may need to think carefully about the order in which 

you draw the features).  You will need to make use of the circle, blot, and thickness commands, 

in addition to those mentioned earlier, and you can if you wish also use movexy and/or drawxy (see 

if you can work out how to use these from the “QuickHelp 2” tab, with some experimentation).  Save 

your program as TGYX2.TGY. 

Exercise 3 
Now edit the program from the previous exercise, adding a loop so that it draws a row of five or more 

faces across the Canvas (you will have to change the radius from 300 to 100 to fit them all in).  You 

can do this in either of the two ways below, both of which involve a variable which is used to count 

the number of faces that have been drawn – here we will call this variable facesdrawn.  Our use of 

this variable will tell the system that facesdrawn is being used as the name of a memory location 

that can store a single integer (i.e. whole number) at any one time.  Think of this memory location as 

a box, into which just one integer can be put, so if a second integer is then stored in the box, the first 

one will be pushed out.  To put the integer 0 into the box, use the statement: 

facesdrawn=0 

and to replace this with the number 1, use: 

facesdrawn=1 

Now let’s look at the two methods for counting through five faces. 

3(f) Using a FOR loop: 
A “for loop” – often called a “counting loop” – automatically counts through the range of values you 

specify (e.g. 1 to 5), repeating the relevant operations each time, and incrementing your variable by 

the amount specified.  In the example below, facesdrawn takes all of the values from 1 to 5 (being 

http://www.turtle.ox.ac.uk/


 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 3 

incremented by 1 each time).  So it is first given the value 1 (after which the statements up to return 

are executed once), then the value 2 (and the statements are executed a second time), then the value 

3 (third time), then 4 (again), and finally 5 (again).  Having reached 5, the loop stops. 

# tgpx3f 

 

def main(): 
  <put statements to position the first face here> 

  for facesdrawn in range(1,5,1): 

    <put statements to draw a face here> 

    <put statements to move to the next face position here> 

  return 

3(w) Using a WHIILE loop: 
A “while loop” repeatedly does the relevant operations while the specified condition remains true, 

and checks the condition each time before doing them.  The condition does not have to involve any 

particular variable, but could involve some other condition (e.g. looping until some key is pressed); so 

this kind of loop is more versatile than a “for” loop.  In the example below, however, the variable 

facesdrawn is used to count the number of faces, initially being given the value 0 and then 

incremented by 1 each time a face is drawn until it reaches the value 5, when the loop stops: 

# tgpx3r 

 

def main(): 

  <put statements to position the first face here> 
  while facesdrawn<5: 

    <put statements to draw a face here> 

    <put statements to move to the next face position here> 

    facesdrawn=facesdrawn+1 

The statement: 

facesdrawn=facesdrawn+1 

means something like “put into the facesdrawn box the number that comes out of the box plus 1” 

– so this has the effect of adding 1 to the number in the box.  Since this is a very common form of 

operation, the system provides a useful shorthand: 

inc(facesdrawn) 

Likewise facesdrawn=facesdrawn-1 – or the shorthand dec(facesdrawn) – would have the effect 

of decrementing the variable facesdrawn by 1 (i.e. subtracting 1).  To add 3 to the variable, use 

facesdrawn=facesdrawn+3, or to square it, facesdrawn=facesdrawn*facesdrawn (note that the 

asterisk “*” is used to signify the operation of multiplication). 

Try editing your original face-drawing program in one of these ways, and when you’ve done it in one 

way, edit it further so that it works in the other way instead.  Save the version with a “for” loop as 

TGYX3F.TGY, and the version with a “while” loop as TGYX3W.TGY.  Having produced these, can you 

edit one of them so that it produces four rows, each of five faces?  (Hint: use a variable called rows, 

which counts the number of rows just as facesdrawn counts the number of faces in each row – take 

a look at the illustrative program called “Nested FOR loops” under the first set of examples to see the 

structure that results in the case of “for” loops).  Save whatever you produce as TGYX3.TGY. 

http://www.turtle.ox.ac.uk/


 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 4 

Exercise 4 
Write a program using at least one “for” loop and one “while” loop, to create an abstract design of 

your own choice.  Use the command randcol to make it colourful (e.g. randcol(6) selects one of 

the first 6 colours).  Save your program as TGYX4.TGY. 

Exercise 5 
The following example program illustrates the use of a simple procedure: 

# squares 

 

def drawsquare50(): 
  forward(50) 

  right(90) 

  forward(50) 

  right(90) 

  forward(50) 

  right(90) 
  forward(50) 

  right(90) 

 

def main(): 

  for count in range(1,8,1): 

    randcol(6) 
    drawsquare50() 

    forward(50) 

Start a new program and type this example in or paste it using the Clipboard, noting as you do the 

following points about the program structure, several of which should by now be fairly familiar: 

a) The program begins with a hash (#) followed by the program’s name (this is optional, but it is 

good practice to name your programs – the # indicates a comment that is intended to help 

people who read your program, but which the computer ignores); 

b) The program then defines a procedure called drawsquare50; 

c) An integer variable count is declared in a “for” loop; 

d) The procedure drawsquare50 is called within the “for” loop. 

Having noted all these points, run the program you’ve entered and check that you understand how it 

works.  Save it under the filename SQUARES.TGY. 

Now, using the “Procedure with parameters” example program (from “Examples 1” under the “Help” 

menu) as a model, see if you can adapt the drawsquare50 procedure to produce a more versatile 

drawsquare procedure which can draw squares of different sizes and in different colours – ask for 

help with this if necessary, because it needs some thinking!1 

                                                           

1 Hints: If the procedure is intended to draw squares of various sizes, then it could start with the line 
def drawsquare(size): and be called with drawsquare(40).  If it is intended to draw squares of various 
sizes and colours, it could start with def drawsquare(size, col): and be called with drawsquare(40, 
green). 

http://www.turtle.ox.ac.uk/


 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 5 

Adapt the program so that it produces an interesting design of your choice, preferably involving at 

least one loop (and maybe, if you’re feeling very ambitious, recursion as illustrated by “Recursive 

triangles” under “Examples 2” in the “Help” menu).  Save the result as TGYX5.TGY. 

Exercise 6 
Reload the final program you did for exercise 3, and reorganise it so that the statements which draw 

the face are enclosed within a procedure called face.  Make sure that it works correctly, and that you 

fully understand what is going on.  Save your revised program as TGYX6.TGY. 

Can you adapt the procedure so that it is able to draw faces of different sizes and/or colours?  If you 

manage this, save the resulting program as TGYX6P.TGY. 

Exercise 7 
Create a program which draws a row of three houses, and which includes both a procedure called 

house, which draws one house, and another procedure called window, which draws a window of a 

house (and is therefore called by the house procedure – this means that it must be placed in the 

program text before the house procedure).  The structure of your program might be like this: 

# tgpx7 

 

def window(): 

  <put statements to draw a window here> 

 

def house(): 

  <put statements to draw a house here, calling window> 

 
def main(): 

  <put main program statements here, calling house> 

You may find the polygon command useful in this exercise, since it will enable you to display a filled 

shape rather than just a line drawing.  The related command polyline can also be useful, for 

example if you want to draw a line border around such a shape.2 

If you haven’t already done so, now adapt the window and house procedures so that each of them 

takes at least one parameter (i.e. a number that gets “fed into” the procedure), enabling your program 

– simply by editing these parameters – to produce different designs of windows and houses (e.g. 

different sizes or colours, or possibly even more elaborate variations).  Save your program as 

TGYX7.TGY. 

Exercise 8 
Write a program using at least two procedures, to create an abstract design of your own choice.  If 

you wish, make use of the new commands blank, direction, ellblot, ellipse, fill, 

recolour, setx, sety, and setxy.  Save your program as TGYX8.TGY. 

                                                           

2 polygon(8) fills in the shape made by the last 8 points visited.  To draw a line around this shape, you need 
to return to the first of these 8 points, and then use the command polyline(9), joining the last 9 points 
visited. 

http://www.turtle.ox.ac.uk/


 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 6 

Exercise 9 
This exercise asks you to produce a program containing a moving red ball.  Each time the ball (i.e. a 

red blot) has to move, you simply “erase” it from the old position (by drawing a white blot over it), 

then draw it in the new position.  So you need to keep a record of the ball’s position at each stage, 

and also what “velocity” should be applied to the ball when moving from each stage to the next.  

Restricting ourselves to the X (horizontal) dimension for the moment, this involves the following steps: 

a) Use a variable x to signify the x-coordinate of the ball. 

b) Use a variable xvel to signify the velocity of the ball in the x-direction (i.e. the amount that 

the ball moves in the x-direction for each “cycle” of the program – if xvel is positive then the 

ball will move to the right; if xvel is negative, then the ball will move to the left). 

c) Set x and xvel to appropriate initial values. 

d) Repeatedly: 

1) Draw a white blot; 

2) Move the turtle to the position signified by x (use the setx command for this); 

3) Draw a red blot; 

4) To make the motion appear smooth, add the commands update and noupdate at 

this point (as explained below); 

5) Add xvel to x, so as to “move” to a new position. 

To make this movement appear smooth, without the ball flashing “on” and “off”, the drawing of the 

white blot over the previous position of the red ball – at stage (d1) – should be virtually simultaneous 

with the drawing of the red ball in its new position – at stage (d3).  This is achieved by ensuring that 

the screen is not updated at stages (d1) to (d3), but only at stage (d4), by inserting an update 

command there (and then immediately turning off updating for the next time round the loop, with 

noupdate). 

If you need further help, simply copy the following program (without the two indented lines), run it, 

and then work out what’s going on – can you see how it produces the effect of a moving ball? 

# tgpx9 

 

def main(): 

  x=0 

  xvel=2 
  while x<1000: 

    colour(white) 

    blot(25) 

    setx(x) 

    colour(red) 

    blot(25) 

                    update() 

                    noupdate() 

    x=x+xvel 

You’ll notice that when this program is run the “ball” appears to flash a lot, because the effect of 

movement depends on an alternating sequence of red and white blots, with each white blot “rubbing 

out” the previous red blot in preparation for a new red blot to be drawn in the next position.  To 

eliminate this flashing and give an effect of smooth movement, simply add the update and noupdate 

instructions to the program in the space where they’re shown.  Now run the program again – this 

http://www.turtle.ox.ac.uk/


 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 7 

time, each white blot is updated to the Canvas only when the subsequent red blot command has also 

been executed: hence the blots appear simultaneously, and an impression of relatively smooth 

movement is given.  For more examples of this technique, see the built-in illustrative programs that 

involve movement. 

Having understood all this, see if you can adapt the program, to make the ball move in two dimensions 

(hint: you will need variables called y and yvel as well as x and xvel, and you might find the 

command setxy helpful).  However far you get, save your program as TGYX9.TGY. 

Exercise 10 
Take the program which you produced in Exercise 9, and modify it so that the ball “bounces” when it 

reaches the edge of the Canvas.  To do this, you will need to use the if instruction to change the ball’s 

velocity at an appropriate point, so that instead of moving right, it starts moving left instead.  You can 

do this with a statement such as: 

if x>975: 

  xvel=-xvel 

which changes the direction of horizontal motion (by changing xvel from positive to negative) when 

the ball gets within 25 units of the right-hand edge of the standard 1000x1000 Canvas.  Now you will 

probably find that the ball bounces back across to the left-hand edge, so to make it bounce at both 

sides, you can adapt the statement above as follows: 

if (x<25) or (x>975): 

  xvel=-xvel 

This switches xvel between positive and negative whenever the ball gets within 25 units of either the 

left or right edge.  Note that we need to use brackets to express a complex condition like this one.  

When you have finished your bouncing ball program, save it as TGYX10.TGY. 

Quite generally, the if structure is extremely useful whenever you want to perform some statement (or 

set of statements) subject to some condition – e.g. depending on the position or velocity of some object, 

or whether or not the mouse has been clicked or a key pressed (we’ll come to these later).  The structure 

can also be extended with … else …, as in this example: 

 if radius<100: 

   circle(radius) 

 else: 

   radius:=100 
   blot(radius) 

This will draw a circle using the current value of the variable radius if that value is less than 100, but 

otherwise will set the value of radius to 100 before drawing a blot using that value. 

Exercise 11 
Variables can store string values as well as integers.  A string is a sequence of letters and other 

characters, possibly a word or a sentence.  String variables are used in much the same way as integer 

variables, and their values are set by putting a sequence of characters inside single quotation marks: 

sometext='put your text here' 

http://www.turtle.ox.ac.uk/


 The Turtle System, University of Oxford 
 www.turtle.ox.ac.uk 8 

Strings can be printed to the Canvas at the current turtle location using the print command.  This 

command takes three parameters – the string to be printed, a number representing the font family 

and style, and another number representing the font size.  There are 16 font families in the Turtle 

System, numbered from 0 to 15; to see them, go to the “QuickHelp 1” tab, and then the 

“Fonts/Cursors” tab on the right. 

The following program prints the string 'Hello World' to the Canvas, in Arial (font 0), 28pt: 

# helloworld 

 

def main(): 

  s1='Hello' 

  s2='World' 

  print(s1+' '+s2, 0, 28) 

Note the first parameter passed to the print command: s1+' '+s2.  When applied to strings, the 

“+” symbol doesn’t mean numerical addition (as it does with integers), but concatenation.  Thus the 

result of s1+s2 is a string of whatever characters are in the variable s1 followed immediately by 

whatever characters are in the variable s2.  The example shown also inserts a space between the two 

strings. 

Write a program that prints a variety of text (e.g. headings and short paragraphs), using at least two 

string variables.  Experiment with different font numbers, using the “Fonts” table as a guide.  Save 

your finished program as TGYX11.TGY. 

Exercise 12 
Write a program illustrating all the main structures and types of command that you have learned so 

far, saving it as TGYX12.TGY. 

http://www.turtle.ox.ac.uk/

