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Turtle Python 8 – Iterated Function Systems 

In an earlier document “Introducing Recursion”, we saw the following program, which includes a “triangle” 

function that makes a single recursive call (i.e. it “calls” itself once), but which is otherwise very similar to 

the “Recursive triangles” example program (and produces an identical pattern): 

def triangle(size): 

    if size>1: 

        for count in range(3): 

            forward(size) 

            triangle(size/2) # just one recursive call 
            right(120) 

 

movexy(-100,150)  

triangle(256) 

When run, it produces the image pictured here, giving the effect of 

triangles within triangles within triangles.  In brief, this happens 

because the program first sets out to draw a triangle of size 256 (this 

triangle can be seen in the middle of the pattern, with its corners 

obscured).  But each time the triangle function draws any side of a 

triangle of a given size, it will interrupt the drawing of the current 

triangle and instruct the drawing of a complete new triangle of half 

that size.  So around the central triangle of size 256, we see 3 triangles 

of size 128; around those are 9 triangles of size 64; around those are 27 of size 32, and so on.  Recursion 

stops when the size parameter gets down to 1, and the function then just exits without doing anything. 

 This image exhibits self-similarity, in that we see the same sort of pattern repeating at different 

scales, so that small parts of the image are smaller copies of the entire thing.  And it bears a striking 

resemblance to what is called a Sierpiński Triangle, as we shall see. 

1.  Three Ways of Creating a Sierpiński Triangle 

The most standard way of creating a Sierpiński Triangle is to 

take a large equilateral triangle, divide it into four smaller 

equilateral triangles, “erase” the central one, then repeat 

these operations on the three other triangles, and continue 

recursively down the levels.  The “Sierpinksi triangle – by 

deletion” program in the menu “Examples 9 – self-similarity 

and chaos” works like this, producing the image shown here 

(which is given a cream background so as to highlight the 

progressive erasing of the central triangles).  As with the 

previous program, the recursion is made to terminate when 

the triangle size gets very small.  The original triangle is set 

up with vertices at coordinate points (400, 138), (843,650) 

and (179,778) – this is done purely to ensure that the 

pattern matches as closely as possible with the pattern 

produced by the “Recursive triangles” program above. 
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 Another more surprising way of generating a Sierpiński triangle is by starting with a random point 

within the overall triangular area, then repeatedly choosing one of the three main vertices at random, 

moving halfway towards it, and drawing a dot.  Here are the program – called “Sierpinski triangle (by random 

dots)”, again in the “Examples 9” menu – together with the resulting image: 

x=[400,843,179] 
y=[138,650,778] 

thisx=randint(400,600) 

thisy=randint(400,600) 

while 1>0: 

    thisc=randrange(3) 

    thisx=(thisx+x[thisc])/2 
    thisy=(thisy+y[thisc])/2 

    pixset(thisx,thisy,purple) 

This records the coordinates of the triangular area at (400,138), (843,650) and (179,778) – as before set so 

as to match the three vertices of the output produced by the “Triangles” program.  A random initial point is 

chosen with x- and y-coordinates (thisx and thisy) between 400 and 600, and then we reach the while loop.  

This first sets thisc randomly to 0, 1, or 2, then moves thisx and thisy (whatever they might currently happen 

to be) halfway towards the corresponding point of the triangular area – e.g. if thisc is equal to 1, then 

(thisx,thisy) is moved halfway towards (x[1], y[1]) which is (843,650).  Then a purple pixel is placed at the 

new point; and the loop repeats.  Leave this running, and a Sierpiński triangle gradually emerges! 

 Another surprising construction uses a one-dimensional cellular automaton of the kind we saw in 

the previous document on “Cellular Automata”, seeding Rule 90 with a single “live” cell at the top: 

width=257 

height=128 

cellcol=[0xFFFFFE,0x000001] 

nextstate=[0]*8 

 

def setup(rulecode): 

    for nhood in range(8): 

        nextstate[nhood]=rulecode%2  

        rulecode=rulecode//2 
 

def nextgen(g): 

    for x in range(-1,width+1): 

        xmod=(x+width)%width 

        thispix=pixcol(xmod,g-1)&1 

        n3=n2*2+thispix 

        n2=n1*2+thispix 

        n1=thispix 

        if x>0: 

            pixset(x-1,g,cellcol[nextstate[n3]]) 

 

canvas(0,0,width,height) 

resolution(width,height) 

setup(90) 

blank(0xFFFFFE) 

pixset(width//2,0,cellcol[1]) 

for generation in range(1,height): 

    nextgen(generation) 
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2.  From the Sierpiński Triangle to Iterated Function Systems 

Yet another way of creating a Sierpiński triangle provides a 

good way into the theory of iterated function systems (IFSs), 

which, as we shall see, enable intricate and beautifully 

natural patterns to be generated with surprising ease. 

For obvious reasons, we focus here on IFSs that 

operate on the Turtle canvas, and for this purpose, it will 

help to use a standard background pattern, like that 

generated by the “Iterated function systems (IFS) 

background” example program from the “Examples 9” 

menu (shown here).  This includes a grid which is helpful for 

recognising where the pattern has been rotated or shrunk, 

and also a spectrum of colours which makes the various 

parts easy to distinguish. 

Now suppose we define a function which “maps” 

points on this 1000×1000 canvas to other points, for 

example by mapping (𝑥, 𝑦) to (0.5𝑥 + 250, 0.5𝑦).  Imagine 

starting at the top of the canvas, scanning down the pixel 

rows, and copying the colour from each pixel onto the 

corresponding pixel as determined by this mapping – e.g. 

the pixel at (100, 500) is copied to (0.5×100+250, 0.5×500) 

which is (300, 250).  The result is shown on the left here.  

Notice how, in accordance with the specification, the entire 

original canvas has been copied onto part of itself, but 

reduced 50% in each direction (as implied by the “0.5x” and 

“0.5y”), and shifted right by 250 pixels (“+ 250”), so that the 

reduced copy is centred horizontally, but still vertically flush 

with the top of the Canvas. 

 What would happen if, instead of starting from the 

top in this mapping operation, we started scanning from 

the bottom and moved upwards?  This would mean that by 

the time we reached halfway up, the bottom of the canvas 

pattern would already have been copied there, so that as 

we continued scanning upwards, we would be recopying 

that already-copied part.  This recopying would be done 

three-quarters of the way up the canvas, so by the time we 

reached that point in our sweep up the canvas, we would 

be recopying the recopy of a copy (to seven-eighths of the 

way up).  Thoughts of the Sierpiński triangle might be 

rekindled by the resulting image, again shown here.  But to 

follow the Sierpiński path, we need to make three reduced 

copies of our canvas, with the following mappings (the first 

of which is the same one we just used): 

 (𝑥, 𝑦)  (0.5𝑥 + 250, 0.5𝑦)  [top centre] 

 (𝑥, 𝑦)  (0.5𝑥, 0.5𝑦 + 500)  [bottom left] 

 (𝑥, 𝑦)  (0.5𝑥 + 500, 0.5𝑦 + 500) [bottom right] 
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Performing these three mappings in different orders will 

yield different results, but shown here is what we get if we 

do them in the order just listed, while scanning the first 

from bottom to top and the others from top to bottom.  

Looking at the bottom right of the canvas (most developed 

because last to be completed), it is easy to imagine that 

repeating these operations may before long give us 

something very like a Sierpiński triangle, at least in the 

repeatedly recopied parts (rather than the backgrounds).  If 

you want to experiment with this sort of thing, try out the 

Sierpińsky option in the program “IFS mappings on coloured 

background”.  This program is quite complicated, so we 

won’t go through it in detail here, but near the end of the 

program you’ll see that the mappings are performed using 

the domap function, whose parameter specifies which mapping is to be done (i.e. 0, 1, or 2), though within 

this program as it stands they are all scanned from top to bottom, so what you see won’t be quite the same. 

 The coloured background in these programs is helpful for understanding how the mappings work, 

but otherwise an unwelcome complication – for example, it’s obviously impossible to achieve a clean 

Sierpiński triangle if the background parts are never erased.  So to take this further, we shall from now on 

treat the Canvas – as we did in the Game of Life – as consisting mainly of “live” (black) and “dead” (white) 

cells, with other colours used only to keep track of intermediate copying (e.g. darkgrey if we want minimal 

contrast; green, red, or blue for high contrast).  To see this in action, load the “Sierpinski triangle (by iterated 

functions)” program from the “Examples 9” menu, and set it running.  We’ll be examining the code of this 

program in a bit more detail in §3 below, but for now let’s just focus on its overall operation.  It starts with 

all cells on a 256×256 Canvas set to black (i.e. live), and then it repeatedly: 

• applies the three Sierpiński mappings to those cells that are not currently dead, colouring the 

copies in turn green, red and blue according to the mapping (this is done by the domap function); 

• at the end of each iteration, kills off any cells that are still black (and hence have not been copied 

over), while making the other coloured cells black (this is done by the cleanup procedure). 

As it goes, the domap function keeps track of how many new 

cells have been born (i.e. changed from white to some other 

colour), while the cleanup function keeps track of how many 

have been killed (i.e. changed from black to white).  The whole 

process iterates until the pattern has reached a “fixed point”, 

with no cells being either born or killed during a full iteration.  

Then the three mappings are performed one last time, so as 

to show the final pattern with colours indicating the three 

mapping areas (as pictured here). 

 With this pattern in view, consider how this program 

has achieved it, which is conceptually very simple.  Starting 

with a fully “live” canvas, on each iteration it has made three 

reduced copies of the live-cells pattern (each copy being 

produced by one of the three defined mappings), and then it 

has killed off any cells that do not feature in any of those copies.  These iterations continued until every cell 

in the pattern was getting recreated on copying, so that the pattern of live cells from one iteration to the 

next became constant – the “fixed point” of the set of mappings.  Now obviously in practice there is a lot of 

approximation going on here, because our Canvas is only 256x256 (or whatever) and cannot store detail “all 

the way down”.  But if we ignore this limitation, and ask what kind of pattern could possibly provide a fixed 

point of this sort of mapping system, it is clear that only a self-similar pattern could do so, for it needs to 
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have the property that the entire original pattern, shrunk to 50% size, exactly matches a sub-part of that 

original pattern.  So it should be no surprise that the process of iterating our mapping functions – if it reaches 

a fixed point at all – ends up yielding such a self-similar, or “fractal” pattern (though again, strictly it is a 

mere approximation to a true fractal, which would have new detail at every scale, all the way down). 

 What might, however, seem more surprising is that an iterated function system of this kind – as long 

as it is able to get started with some “live” cells – will yield the very same fixed point pattern irrespective of 

its starting point.  We began with a Canvas in which every cell was “live”, but in fact the result will be 

identical (apart from the time taken) if we start instead with a small “live” blot anywhere on the Canvas, for 

example by replacing the third line of the main program: 

blank(live) 

with: 

setxy(randint(1,xcanvas),randint(1,ycanvas)) 

colour(live) 

blot(10) 

That blot will be copied (and shrunk) three times on the first iteration, then each of those copies will be 

copied (and shrunk) on the second iteration, and so on.  The copying and continual shrinking of scale means 

that eventually some part of the copied pattern will get close enough to coincide with pixels in the Sierpiński 

fixed-point pattern, after which every subsequent threefold copy of those pixels will populate other pixels 

in that fixed-point pattern (since the fixed-point pattern is by definition the pixel pattern that gets copied 

into itself).  This same logic means that the program could start from one single live pixel (e.g. try replacing 

“blank(live)” with “pixset(1,1,live)”.  And this in turn enables us to explain why the surprisingly simple 

program “Sierpinski triangle (by random dots)” (in the middle of §1 above) works.  Recall that this started 

with a single random dot, which was moved iteratively halfway towards a (randomly chosen) vertex of the 

pre-defined large triangle.  But such a halfway move is, in effect, exactly the same kind of mapping that we 

have defined above: if we imagine every point of the large triangle being copied by such a movement, then 

the result would be a copied triangle of half the size, occupying one corner of the original triangle.  So the 

“Sierpinski triangle (by random dots)” program is, in effect, an implementation of the same kind of iterated 

function system that we have been exploring here, except that instead of copying the entire pattern on 

each iteration, it copies only one pixel while retaining all the pixels that it has previously visited, and thus – 

over time – builds up the same pattern (though probably with small imperfections because it will also, of 

course, include any initial pixels that it visited before it reached one of the fixed-point pixels). 

3.  From Iterated Functions to a Dragon Curve 

The “Sierpinski triangle (by iterated functions)” program is designed to be very easily modifiable to work 

with other iterated function systems, simply by changing the relevant constants (i.e. the canvas dimensions 

and parameters of mappings).  This can be seen by comparing it directly with the “Dragon curve (by iterated 

functions)” program in the same menu, which differs only in the initial settings in its first dozen lines.  

Each program starts with the relevant canvas dimensions and “live” colour.  Here is how they are 

set in the Sierpiński program, with xcanvas and ycanvas both being set to an exact power of 2 to avoid 

rounding errors when the triangle pattern repeatedly halves its size: 

xcanvas = 256 

ycanvas = 256 

live = black 

Then follow the details of the crucial mappings, which are preceded by two lines which specify the number 

of mappings, and a coefficient divisor – in the Sierpiński program, these are: 

mappings = 3  # number of mappings 

coeffdiv = 2  # dividing factor for all x and y coefficients 
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The latter is needed because the coefficients of x and y will generally be fractional, whereas Turtle only 

recognises integer numbers.  So, for example, we can express an effective x-coefficient of 1/2 by specifying 

the coefficient of x as 1 with coeffdiv being 2. 

 When defining the Sierpińsky mappings, instead of using the numbers 128 and 64 to represent half 

and a quarter of the Canvas width, it is better to refer to these as xcanvas/2 and xcanvas/4 respectively 

(likewise ycanvas/2 to represent half of the Canvas height).  This makes it easy to modify the resolution of 

the image, by simply changing the initial values of xcanvas and ycanvas (e.g. to 512 or 1024).1  Here, then 

are the mappings as they appear in the “Sierpinski triangle (by iterated functions)” program: 

 (𝑥, 𝑦)  ( 1/2 𝑥 + 𝑥𝑐𝑎𝑛𝑣𝑎𝑠/4  , 1/2 𝑦)   [top centre] 

 (𝑥, 𝑦)  ( 1/2 𝑥                             , 1/2 𝑦 + 𝑦𝑐𝑎𝑛𝑣𝑎𝑠/2)  [bottom left] 

 (𝑥, 𝑦)  ( 1/2 𝑥 + 𝑥𝑐𝑎𝑛𝑣𝑎𝑠/2  , 1/2  𝑦 + 𝑦𝑐𝑎𝑛𝑣𝑎𝑠/2)  [bottom right] 

Rewriting these out in full, with explicit coefficients of x, y, and a constant term, we have: 

 (𝑥, 𝑦)  (  1/2 𝑥 +  0 𝑦 +  𝑥𝑐𝑎𝑛𝑣𝑎𝑠/4   ,   0 𝑥 +  1/2 𝑦 +  0                    ) 

 (𝑥, 𝑦)  (  1/2 𝑥 +  0 𝑦 +  0                      ,   0 𝑥 +  1/2 𝑦 +  𝑦𝑐𝑎𝑛𝑣𝑎𝑠/2 ) 

 (𝑥, 𝑦)  (  1/2 𝑥 +  0 𝑦 +  𝑥𝑐𝑎𝑛𝑣𝑎𝑠/2    , 0 𝑥 +  1/2 𝑦 +  𝑦𝑐𝑎𝑛𝑣𝑎𝑠/2 ) 

And now if we look at the corresponding coefficients in all three mappings together, we can see that these 

have been captured in the lists below, noting again that the x and y coefficients are understood as being 

divided by 2 (because this is the specified value of coeffdiv): 

mapxx = [1,         1,         1        ] 

mapxy = [0,         0,         0        ] 

mapxc = [xcanvas/4, 0,         xcanvas/2] 

mapyx = [0,         0,         0        ] 

mapyy = [1,         1,         1        ] 

mapyc = [0,         ycanvas/2, ycanvas/2] 

So in general, if the nth mapping is understood as mapping the point (x, y) to the point (x', y'), then: 

x'  =  (mapxx[n]/coeffdiv) x  +  (mapxy[n]/coeffdiv) y  + mapxc[n]  
y'  =  (mapyx[n]/coeffdiv) x  +  (mapyy[n]/coeffdiv) y  + mapyc[n]  

Thus it is possible to express any desired set of mappings straightforwardly within this program structure. 

In a parallel way, the “Dragon curve (by iterated functions)” program applies the following three 

mappings on a 1000×1000 Canvas: 

 (𝑥, 𝑦)  (0.577𝑦 + 95   , −0.577𝑥 + 589) 

 (𝑥, 𝑦)  (0.577𝑦 + 441 , −0.577𝑥 + 789) 

 (𝑥, 𝑦)  (0.577𝑦 + 95    , −0.577𝑥 + 989) 

To enable the coefficients of x and y to be specified to three decimal places, this program uses a coeffdiv 

constant of 1000 rather than 2: 

mappings = 3     # number of mappings 

coeffdiv = 1000  # dividing factor for all x and y coefficients 

mapxx = [0,    0,    0   ] 

mapxy = [577,  577,  577 ] 

mapxc = [95,   441,  95  ] 

 
1 In the mappings of the “Iterated function systems (IFS) background” example program of §2 above, xcanvas/2 and 

ycanvas/2 were 500, and xcanvas/4 was 250.  But as already noted, we get a much neater Sierpińsky pattern (all the 
way down to the pixel level) if the Canvas width and height are an exact power of 2. 
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mapyx = [–577, –577, –577] 
mapyy = [0,    0,    0   ] 

mapyc = [589,  789,  989 ] 

All three mappings here have the same coefficients of both x 

and y, differing only in their constant terms.  They all copy the 

Canvas, reduced by a linear factor of 0.577, which is 

approximately 1 √3⁄  (so the copies will each have an area 1/3 

of the original) and turned 90° clockwise (achieved by making 

the new x and y coordinates linear functions of the old y and 

negative x coordinates).  The second mapping is shifted 

horizontally well to the right of the others, and 200 units 

lower than the first, while the third mapping is 200 units 

lower again.  When the fixed point pattern has been reached 

as shown here, the three copies of the pattern will fit together 

more or less exactly within the original: here they are coloured green, red, and blue in order.  Note visually 

that if you take the whole pattern, shrink and turn it 90° to the right, you do indeed get the correct shape 

and orientation for all three of the smaller copies. 

To keep this program relatively simple, we have used a 1000×1000 Canvas which makes its 

operation rather prolonged (taking 20 iterations and probably 30 minutes or more).  In the following section, 

we see a program which can generate a (less detailed) Dragon curve more quickly, by using a mapping 

procedure which allows us to scale any pattern down, and also to locate it more flexibly within the x-y plane. 

4.  Introducing the Barnsley Fern and the “IFS Demonstrator” Program 

In our Sierpińsky and Dragon curve programs, we used a square Canvas whose origin was (1,1).2  But many 

iterated function systems – including Michael Barnsley’s famous fern – are better expressed on a Canvas 

which is placed elsewhere on the plane, and we would prefer to have a program whose generation of these 

patterns is less dependent on the Canvas dimensions, so as to allow a trade-off between speed and detail 

(as with the Mandelbrot programs in the document on Chaotic Phenomena).  So we now move on to the 

“IFS demonstrator program”, again in the “Examples 9” menu, which includes also the Sierpińsky and 

Dragon examples (plus a tree).  The fern is made by applying the following four mappings to a 500×1000 

Canvas stretching from (–236,1) to (263,1000) inclusive, and starting with a single live pixel, e.g. at (1, 1): 

 (𝑥, 𝑦)  (0, 0.16𝑦) 

 (𝑥, 𝑦)  (0.85𝑥 + 0.04𝑦, −0.04𝑥 + 0.85𝑦 + 160) 

 (𝑥, 𝑦)  (0.2𝑥 − 0.26𝑦, 0.23𝑥 + 0.22𝑦 + 160) 

 (𝑥, 𝑦)  (−0.15𝑥 + 0.28𝑦, 0.26𝑥 + 0.24𝑦 + 44) 

To achieve this, while also keeping the program speed relatively manageable – by contrast with the slow 

Dragon curve program in §3 above – the Barnsley Fern option in the “IFS demonstrator program” uses a 

 
2 Note that the Sierpińsky program works significantly more neatly with a Canvas extending from 1 to 256 than from 

0 to 255, because of how Turtle rounds numbers whose decimal part is 0.5.  Turtle consistently rounds such numbers 
upwards to the next integer (e.g. rounding 11.5 to 12, 12.5 to 13, and –1.5 to –1), unlike standard Python 3, which uses 
what is called “banker’s rounding”, rounding such numbers to the nearest even integer (thus rounding 11.5 to 12, 12.5 
to 12, and –1.5 to –2).  The latter is a good policy when doing statistics on large sets of numbers (e.g. in financial 
accounts), because it results in a mixture of rounding up and rounding down, which tend to cancel each other out in 
the overall totals.  But it’s obviously not so good when programming visual models, in which we generally want 
differences between values (e.g. functions of Canvas coordinates) to act in a consistent way.  When writing iterated 
function system programs, it’s good to be aware that rounding errors – which are inevitable given the lack of infinite 
precision – can cause irregularities in the patterns, and experiment might be needed to find the optimal approach. 
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scaledown variable which reduces the actual Canvas size while maintaining the same virtual coordinates for 

the mappings.  Thus with a scaledown value of 2, the actual Canvas ranges from –118 to 132 horizontally 

(instead of –236 to 263), and from 1 to 500 vertically (instead of 1 to 1000).  This enables the mappings and 

virtual Canvas dimensions to be specified in a way that’s independent of the scaledown factor, making it 

very easy to run the program at different “magnifications” by changing scaledown.  Here we see scaledown 

being made equal to 2, in the context of the complete list of settings within the setbarnsley function: 

    xleft = –236 

    xright = 263 

    ytop = 1 

    ybottom = 1000 

    scaledown = 2 

    mappings = 4 

    live = seagreen 

    copied = emerald 

    coeffdiv = 100 

    mapxx=[ 0,   85,  20,  –15 ] 

    mapxy=[ 0,   4,   –26, 28  ] 

    mapxc=[ 0,   0,   0,   0   ] 

    mapyx=[ 0,   –4,  23,  26  ] 

    mapyy=[ 16,  85,  22,  24  ] 

    mapyc=[ 0,   160, 160, 44  ] 

The main program applies this scaling down by calculating some surrogate values for the Canvas 

dimensions, and the x- and y-coefficients, as follows: 

xl = xleft/scaledown 

xr = xright/scaledown 

yt = ytop/scaledown 

yb = ybottom/scaledown 

for i in range(mappings): 

    mapxc[i] = mapxc[i]/scaledown 

    mapyc[i] = mapyc[i]/scaledown 

Now the Canvas and image resolution are set accordingly, so that the top-left of the Canvas will be at (xl,yt) 

and the bottom-right at (xr,yb), with resolution set to match the coordinate values: 

canvas(xl,yt,xr-xl+1,yb-yt+1) 

resolution(xr-xl+1,yb-yt+1) 

Then either the Canvas is filled with the live colour (e.g. 

seagreen in the list of settings above), or else a single pixel – 

randomly selected on the Canvas – is made live (depending on 

the seedpixel variable as described below), and we enter the 

same kind of loop as in the Sierpińsky and Dragon IFS programs. 

 Apart from the Canvas scaling, the other most obvious 

differences between this program and those two earlier 

programs arise from the user choices provided by the lengthy 

(but conceptually straightforward) initial startprompt function.    

First comes a choice of four pattern options (including an 

inverted version of the Tree curve pictured here) with the 

following prompt: 

Select Barnsley fern, Sierpinski, Dragon, or Tree curve? (B/S/D/T) 

The program waits until one of the four specified keys has been pressed, and then calls the corresponding 
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function (either setbarnsley, setsierpinsky, setdragon, or setinvertedtree) to fix the parameters for the 

iterated function that is to be generated.  (We have already seen – in the previous paragraph – a list of such 

parameter settings taken from the setbarnsley function.)  Then follow two more prompts:  

Start with single Pixel or entire Canvas? (P/C) 

Use Uniform or Different colours for mappings? (U/D) 

Depending on which key is pressed in response to the first of these, the variable seedpixel is set either True 

(“P”) or False (“C”), and likewise with the latest prompt, the variable uniform is set either True (“U”) or False 

(“D”).  The seedpixel setting determines whether the pattern will start with a single randomly chosen pixel 

– which sometimes reaches the “fixed point” pattern much more quickly – or with a fully coloured Canvas.  

The uniform setting determines whether the Canvas copying will all be done using the colour specified by 

the copied variable (which is emerald in the setbarnsley settings above), or alternatively, in a sequence of 

Turtle standard colours, with the first mapping being done in green, the second in red, the third in blue, the 

fourth in yellow, the fifth in violet, and so on as necessary.  Finally, in the latter (non-uniform) case, a fourth 

prompt is given, to determine the value of the multicolour variable: 

When completed, leave in Single colour or Multicolour? (S/M) 

If “S” is pressed, then the eventual “fixed point” pattern at the very end of the program will be left in the 

live colour (e.g. seagreen), whereas if “M” is pressed, multicolour will be set True, and the multicoloured 

mappings will be performed one last time before the program terminates.  (To see the difference vividly, 

compare the green Tree image just above with the earlier multi-coloured Dragon and Sierpińsky images.) 

There is finally one other significant difference between the “IFS demonstrator” program and the 

previous Sierpińsky and Dragon IFS programs, namely, that as each successive iterated mapping is carried 

out, the calculation of the new coordinates x' and y' (as described earlier) is performed using the divmult 

function – as in the Mandelbrot set program in the document on “Chaotic Phenomena” – to avoid potential 

numerical overload whilst achieving correctly rounded calculations.  Thus within the domap function, when 

performing mapping n, it replaces:3 

     newx = x*mapxx[n]/coeffdiv + y*mapxy[n]/coeffdiv + mapxc[n] 

with: 

     newx = divmult(x,coeffdiv,mapxx[n]) + divmult(y,coeffdiv,mapxy[n]) + mapxc[n] 

And likewise it replaces: 

     newy = x*mapyx[n]/coeffdiv + y*mapyy[n]/coeffdiv) + mapyc[n] 

with: 

     newy = divmult(x,coeffdiv,mapyx[n]) + divmult(y,coeffdiv,mapyy[n]) + mapyc[n] 

This change is not actually necessary for the four “built-in” options (Barnsley fern, Sierpińsky triangle, 

Dragon, or Tree), but provides more flexibility for experimentation, in case you wish to try out parameters 

that are numerically more precise (with larger integer coefficients and also larger values of coeffdiv). 

5.  Understanding the Barnsley Fern 

Recall from the beginning of §4 above that the standard Barnsley fern is to be produced using the following 

four mappings on a Canvas stretching from (–236,1) to (263,1000) inclusive.  Our program can scale down 

both the parameters in the mappings and the Canvas dimensions, proportionately reducing them by an 

appropriate scaledown factor (e.g. 2) in order to achieve more program speed (at the cost of less detail in 

the image), but we can ignore that complication here.  For our aim now is to understand conceptually how 

these mappings can indeed work to create the beautiful fern image shown below:  

 
3 Domap’s parameter is actually called mapnum, but here we use n for brevity. 
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 (𝑥, 𝑦)  (0, 0.16𝑦) 

 (𝑥, 𝑦)  (0.85𝑥 + 0.04𝑦, −0.04𝑥 + 0.85𝑦 + 160) 

 (𝑥, 𝑦)  (0.2𝑥 − 0.26𝑦, 0.23𝑥 + 0.22𝑦 + 160) 

 (𝑥, 𝑦)  (−0.15𝑥 + 0.28𝑦, 0.26𝑥 + 0.24𝑦 + 44) 

It seems very surprising that such a wonderfully lifelike pattern can be 

produced in such a mathematically simple way, and also that an otherwise 

identical program can yield either the Sierpiński triangle or this intricate fern, 

just by changing the coefficients of a few mappings!  But how can the required 

mappings be worked out?  What Barnsley did was to observe that the fern 

pattern is self-similar with three of its own components, though in a more 

complex way than the Sierpiński triangle.  These three components, coloured 

red, blue and cyan in the image below, correspond respectively to the second, 

third, and fourth mappings: 

 (𝑥, 𝑦)  (0.85𝑥 + 0.04𝑦, −0.04𝑥 + 0.85𝑦 + 160) 

  maps the entire fern onto the large red sub-fern; 

 (𝑥, 𝑦)  (0.2𝑥 − 0.26𝑦, 0.23𝑥 + 0.22𝑦 + 160) 

  maps the entire fern onto the blue frond; 

 (𝑥, 𝑦)  (−0.15𝑥 + 0.28𝑦, 0.26𝑥 + 0.24𝑦 + 44) 

  maps the entire fern onto the cyan frond. 

(The first mapping – not shown here – simply draws the stalk of the fern, which 

will then be copied to form the stalk of every frond.)  

 The “IFS mappings on coloured background” program (which we saw in 

§2 above) can be used to explore these mappings.  On the left here is what we 

get if we just perform the second mapping from 

bottom to top, which maps the entire fern onto the 

red sub-fern without recopying bits that have already 

been copied by the same mapping.  As we saw with 

the Sierpiński mappings, however, things change if 

we do this in the opposite direction (here, from top 

to bottom) in such a way that multiple recopying takes place.  And below to the 

right is what we get if all three mappings are performed from top to bottom, in 

sequence.  Notice how the large curved pattern which 

was generated down the canvas by the multiple 

recopyings during the second mapping then gets copied 

by the third and fourth mappings to the places occupied 

by the blue and cyan fronds in the picture above.  Notice 

also how once these fronds are in place, subsequent 

applications of the first mapping will copy them further 

down the canvas to produce the smaller fronds on either side of the curving main 

fern.  Again, what is remarkable about Barnsley’s discovery is how the definition 

of appropriate mappings from a planned overall pattern to its intended self-

similar components, followed by repeated iteration of those mappings until a 

fixed point is reached, is sufficient by itself to create whatever pattern has those 

desired self-similarities.  So once we have identified and specified the three self-

similarity mappings that characterise our desired fern, no further programming 

or mental work is required – just press “RUN”, and see the pattern emerge! 
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