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Turtle Python 4 – Animation and User Input 

Although not a fundamental part of Computer Science, it is great fun to write programs that are animated 

and interactive, for example video games!  To make this achievable as quickly as possible, here we are 

already – in only the third Turtle Python document – learning how to do so.  Some of the material in §4 

below (handling keyboard and mouse input) might seem rather technical.  But if you find it difficult, feel 

free to ignore it until you come to want to do something that requires it.  None of this material is essential 

from the point of view of learning Computer Science, and much of this is specific to the Turtle System 

(because the standard “Core” of Python has very limited facilities for graphics and input).  But it covers 

things that you might well want to do to make your programs interactive and entertaining.  

1.  Introduction to Animated Movement 

Simulating a moving object on a screen assumes that we are keeping track of where it is at each “instant”.  

Suppose that the object has already been drawn at some initial position.  Then visual movement is achieved 

with a “loop” that cycles through the following operations repeatedly: 

 Erase the object’s image at its current position 

 Update the object’s position 

 Draw the object in its new position 

 Pause for a time, depending on the desired speed of movement 

Usually the object’s position will be stored as x- and y-coordinates, and movement will be expressed in 

terms of velocities in the x- (horizontal) and y- (vertical) directions.  Suppose, for example, that we start off 

with the object 100 units from the left of the canvas and 700 units from the top (so x-coordinate 100 and y-

coordinate 700); we refer to this as position “(100,700)”.  (Note that in computer graphics, the y-axis points 

downwards rather than upwards as in conventional mathematics.)  Then suppose we want the object to 

move to position (900,300) over 100 steps, so that the x-coordinate (let’s call this “x”) increases by 8 each 

step, and the y-coordinate (call this “y”) decreases by 4 each time.  Our loop now looks something like this: 

Start by making x equal to 100, and y equal to 700 

Repeat 100 times: 

 Erase the object’s image at position (x,y) 

 Add 8 to x; subtract 4 from y 

 Draw the object at position (x,y) 

 Pause for a time, depending on the desired speed of movement 

Suppose that our “object” is a red ball of radius 50.  Then to draw it at position (x,y), we simply move the 

Turtle to that position using the command setxy(x,y) and draw a red blot of radius 50 there.  To erase 

it, we draw a white blot in the same position.  If we put these commands within the loop structure above, 

that should work, but the movement is likely to appear “flickery” because the object is being repeatedly 

erased and drawn again.  To deal with this problem, the display can be “frozen” (by preventing screen 

updates) before the erasing takes place, and then “unfrozen” (by re-enabling screen updates) after the 

object has been redrawn.  This makes the redrawing almost simultaneous with the erasing, so the object 

won’t seem to disappear at all: 

x = 100 

y = 700 

for count in range(100): 

    noupdate() 
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    colour(white) 
    blot(50) 

    x = x+8 

    y = y-4 

    setxy(x,y) 

    colour(red) 

    blot(50) 
    update() 

    pause(10) 

This is, in fact, almost identical to the Example program “Moving ball (using variables)” within Examples 

menu 4.  The only very slight difference in that program is use of blot(51) rather than blot(50) to erase 

the ball – this is because if Turtle is run in the online web browser version, an image-processing technique 

called anti-aliasing “smudges” the edges of the blot, so that the red colour extends slightly beyond the strict 

boundary, requiring a larger white blot to erase it. 

2.  Acceleration and Bouncing 

In the example above, the red “ball” moves a constant amount between loop cycles: its x-coordinate 

increases by 8, and its y-coordinate decreases by 4.  So the ball has a velocity in the x-direction of +8 units 

per cycle, and a velocity in the y-direction of -4 units per cycle.  To make the example more easily flexible, 

we could create variables xVelocity and yVelocity to represent these velocities.   Then these two assignments 

would be added to the program above: 

xVelocity = 8 

yVelocity = -4 

while the looping changes to the x- and y-coordinates would become: 

x = x+xVelocity 

y = y+yVelocity 

Having done this, we can now accelerate (or decelerate) the ball by changing the values of xVelocity and 

yVelocity – for example, if xVelocity is made equal to 16, the horizontal movement will be twice as fast, and 

if yVelocity is made equal to 0, the ball will stop rising and instead move only horizontally. 

We can also make the ball “bounce” by inverting the velocities when the ball overlaps the relevant 

edge of the canvas (e.g. by changing xVelocity from +8 to -8, or yVelocity from -4 to +4).  Since the ball has 

a radius of 50 units, and the default canvas coordinates range from 0 to 999 inclusive, this bouncing should 

be made to happen when either x or y is less than 50, or greater than 949.  We achieve this using two simple 

“if” statements, as follows: 

if (x<50) or (x>949): 

    xVelocity = -xVelocity 

if (y<50) or (y>949): 

    yVelocity = -yVelocity 

Now instead of limiting the ball’s movement to 100 steps (using the “for” loop), we can allow it to continue 

indefinitely, knowing that it will never leave the canvas because it will always bounce back from the edges.  

One way of doing this is to put the movement into a “while” loop whose condition – here “0<1” – remains 

true eternally: 

while 0<1: 

    ... 

The complete program can be found in Examples menu 5, under the title “Bouncing ball (using variables)”.  

(As before, this draws a white blot radius 51, to deal with web browser anti-aliasing.) 
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3.  Taking Advantage of the Turtle Coordinates 

In the examples above, we used variables x and y to record the current coordinates of the moving object.  

But if we are dealing with just one object, then we can instead take advantage of the Turtle’s inbuilt variables 

turtx and turty to do this work for us.  If we draw the object only at the position of the Turtle, and accordingly 

move the Turtle where we want the object to go, then turtx and turty will automatically be updated as we 

move around, enabling our program to be shorter.  The original commands: 

x = 100 

y = 700 

can then be replaced by: 

setxy(100,700) 

which sets turtx to 100, and turty to 700.  In a similar way, the three commands: 

x = x+8 

y = y-4 

setxy(x,y) 

can be replaced by the single command: 

movexy(8,-4) 

which adds 8 to the Turtle’s x-coordinate turtx, subtracts 4 from the Turtle’s y-coordinate turty, and thus 

moves the Turtle to that position for the ball to be drawn there (note that movexy differs from drawxy, 

which draws a line as the turtle moves but is otherwise similar). 

 To see completed programs using this technique, go to Examples menu 4 where you will find 

“Moving ball (using Turtle)” and “Bouncing ball (using Turtle)”.  

4.  Mouse and Keyboard Input 

Let us now see how user input can be incorporated into running programs, since this can be used quite 

generally to make your programs more interesting (e.g. by incorporating real-time user controls).  Turtle 

provides quite powerful facilities for input, falling into three main categories, concerned with capturing: 

• Keyboard typed input 

• Key presses 

• Mouse movements and mouse clicks 

Note the distinction between the first two of these: one involves the characters that are typed in from the 

keyboard (taking account of lower/upper case etc.), while the other involves the physical key presses.  When 

typing takes place, typically both types of input are recorded simultaneously. 

4.1  Keyboard Typed Input 

When keys are pressed while a program is running within the Turtle System, the typed characters are 

standardly put into a keyboard buffer which stores them for later reading.  The virtue of maintaining such a 

buffer is that you don’t need to write code to read characters one by one as they are typed, which would 

be tricky and cumbersome.  The keyboard buffer has a default length of 32, meaning that if you type 32 

characters without reading any of them in the meantime, then no more characters will be accepted (and 

the machine will emit a beep as you type them).  The integer function keystatus(\keybuffer) can be 

used to discover how many characters are currently in the keyboard buffer, while the procedure 

reset(\keybuffer) empties the buffer completely.  If you need a larger buffer, to accommodate, say, 

up to 100 characters, then you can change its size using the command keybuffer(100). 
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 Core Python provides only one function for reading keyboard input, which first displays a prompt 

and then reads an entire line (i.e. it requires Return or Enter to been pressed).  Suppose, for example, that 

you want the user to input their name, then you might use the instruction: 

s = input("What is your name? ") 

This displays “What is your name?” followed by a space, and waits for the user to type a line of text (ending 

with the Return or Enter key), then assigns that line of text to the variable s – which is thus a string variable 

(i.e. it holds a string of characters rather than a number).  For a simple program that uses this technique, 

see “Asking for typed input” in Examples menu 5.  If you want to read a line of input without giving any 

prompt, you can either give an empty prompt: 

s = input("") 

or none at all: 

s = input(). 

(Note that although Turtle’s default keyboard buffer holds only 32 characters, the input command can 

cope with more, because it continuously reads characters from the keyboard buffer – thus freeing up space 

for more characters – until it encounters an end-of-line character; but the end-of-line character itself is 

discarded and does not become part of the string variable’s value.  In Turtle’s default state, a string variable 

can hold up to 64 characters.) 

 Turtle provides another function for reading characters (rather than whole lines) from the keyboard 

buffer.  Suppose, for example, that you want to read up to 10 characters, then you could write:  

s = read(10) 

This instruction reads up to 10 characters from the keyboard buffer (thus removing them from the buffer 

and freeing up space in it), and assigns them to the relevant string variable s.  Thus if the user previously 

typed only “Hello”, then after the command executes, the variable’s value will be “Hello” and the keyboard 

buffer will be empty, but if the user previously typed “Hello there, how are you?”, then the variable’s value 

will now be “Hello ther” (10 characters, including a space) and the keyboard buffer will be left containing 

“e, how are you?”.  To read the contents of the keyboard buffer without removing any characters from it, 

use s = read(0).  (The name of the read function echoes the Python equivalent, sys.stdin.read, 

which requires importing the sys module and so is not part of the Core language.  Turtle Python is designed 

to be self-contained, and so does not require any additional modules.) 

4.2  Key Presses 

While any program is running within Turtle, details of the latest key press are recorded continuously, and 

this information can be consulted using the special “query” functions ?key and ?kshift, both of which 

return integer values.  Thus for example: 

n = ?key 

will make n equal to the relevant key value.  If the A key is currently being pressed, then n will be made 

equal to 65 (the ASCII code for ‘A’); but if the A key has just been released (with no other key being pressed 

in the meantime), then ?key will have been negated so that n will be -65.  In this way, ?key can be used 

both to identify the last key press, and also whether that press is still continuing.  To make identification 

easier, Turtle provides built-in keycode constants, including \a (65) to \z (90), likewise for the digit keys 

(e.g. \4, or \#4 on a numeric keypad) and other standard character keys (e.g. \=), and for the special keys: 

\alt, \backspace, \capslock, \ctrl, \delete, \down, \end, \enter, \escape, \f1 (etc.), \home, 

\insert, \left, \lwin, \pgdn, \pgup, \return, \right, \rwin, \shift, \space, \tab, and \up.  

Thus to do something repeatedly until the ESCAPE key has been pressed – irrespective of whether that key 

is then immediately released – it is simplest to use a loop citing \escape (actual value 27), but also 

incorporating the abs function (meaning absolute value, e.g. abs(-27) is equal to 27): 
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while abs(?key) != \escape:  # in Python, “!=” means “is not equal to” 

    <do something> 

 

Whenever a key is pressed, its “shift status” is recorded as a single number, which is calculated as 128 plus 

8 if the Shift key was being held down at the time, plus 16 if Alt was held down, plus 32 if Ctrl was held 

down.  Thus if the last key was pressed with Ctrl and Alt both held down, then ?kshift will return the value 

128+16+32 = 176 (at least while the key is still pressed; again this goes negative, to -176, if called after the 

key has been released).  This value is also recorded separately for each key, so that keystatus(\a), for 

example, will return the corresponding value for the last press of the A key (even if other keys have been 

pressed in the meantime).  Much as with the keyboard buffer (in the previous section), reset(\a) puts 

the keystatus of the A key back to its default setting (here -1).  More detail on all of this is given in the built-

in “User Input” help panel (within Turtle’s “QuickHelp 1” tab), which gives a handy reference. 

4.3  Mouse Movements and Mouse Clicks 

While a program is running, Turtle continuously keeps track of the position of the mouse over the Canvas, 

with the x- and y-coordinates being given by the integer functions ?mousex and ?mousey respectively.  

Likewise, when a mouse click takes place, the x- and y-coordinates of the click position are given by the 

integer functions ?clickx and ?clicky.  Rather like the function ?kshift (which, as we saw in the 

previous section, records the status of the last key press), so ?click records the status of the last mouse 

click, calculated as 128 plus 1 for a left-click, 2 for a right-click, 4 for a middle-click, 8 if Shift was held down, 

16 if Alt was held down, 32 if Ctrl was held down, and 64 if it was a double-click (and again as with key 

presses, ?click is made negative when the click event finishes).  But often a more convenient way of 

checking for a specific mouse click is to use the functions ?lmouse, ?rmouse and ?mmouse, which return 

the status for the latest click with the corresponding mouse button (left, right, and middle respectively).  

Thus, for example, a loop like this will wait until the left mouse button is actually being clicked: 

while (?lmouse<=0):  # in Python, “<=” means “is less than or equal to” 

    # do nothing 

If, on the other hand, you want a loop to terminate after the left mouse button has been clicked, whether 

or not it is still being held down, you could use: 

reset(?lmouse) 

while abs(?lmouse<=128): 

    <do something> 

The command reset(?lmouse) sets the left-mouse status to -1.  When that mouse button is clicked, the 

status value will change to 129 (assuming an ordinary click with no Shift etc.), and when it is released, 

to -129.  Hence looping until it achieves an absolute value greater than 128 does the trick. 

4.4  Detecting Timed Input 

Turtle also provides a useful function for detecting either keyboard presses or mouse input over a specific 

time period.  Suppose, for example, that you want to give the user up to 3 seconds to press the ENTER (or 

RETURN) key, then you could use the instruction: 

n = detect(\enter,3000) 

This waits for 3000 milliseconds, unless the ENTER key is pressed meanwhile.  If ENTER is pressed in time, 

then n will be assigned the appropriate status code, as explained in §4.2 above (i.e. 128, or 136 if Shift was 

being held down, etc.).  If ENTER has not been detected after 3 seconds, then n is made equal to 0.  If you 

want Turtle to wait indefinitely for input, then specify a time parameter of 0. 

Note that while Turtle is waiting for input here, anything typed on the keyboard will be “echoed” 

on the Console.  To control whether such echoing occurs, you can use the keyecho instruction, for example: 
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print('Press ENTER within 3 seconds') 
keyecho(False) 

n = detect(\enter,3000) 

if n == 0: 

    print('Too late!') 

else: 

    print('Well done!') 
keyecho(True) 

in which the final instruction turns the keyboard echo back on (assuming that’s wanted). 

 Exactly the same technique applies for mouse clicks, except that here the first parameter to the 

detect function – called an inputcode – will be one of the mousecodes \lmouse, \rmouse or \mmouse, 

depending on whether you are waiting for a left, right, or middle mouse click.  And in this case, the 

appropriate status code returned by the function will be as explained in §4.3 above. 

 There is also one special inputcode which handles both key presses and mouse clicks, and thus 

enables you to write a program that waits for whichever input occurs first.  Thus, for example, 

n = detect(\mousekey,1500) 

will wait for up to 1.5 seconds until either a key is pressed or a mouse button is clicked.  If neither happens, 

then n will be made equal to 0.  If a mouse click occurs, then n will be made equal to 1, 2 or 4 respectively, 

depending on whether the click involves the left, right, or middle button.  If a key is pressed, then n will be 

made equal to the relevant keycode (e.g. 13 = \return = \enter for the RETURN or ENTER key; 27 = 

\escape for the ESCAPE key; 65 = \a for the A key, etc.). 

4.5  Examples 

To see a wide range of these techniques in action, take a look at the programs in Examples menu 5, 

“user input, interaction, and games”: 

• “Asking for typed input” illustrates simple use of the input command (as we saw in §4.1). 

• “Mouse reaction game” illustrates waiting for the ESCAPE key, waiting for a left mouse click, and 

identifying the colour of the pixel at the mouse position. 

• “Typing test (checking characters)” uses detect(\escape,5000) to implement a wait of up to 5 

seconds, and detect(\keybuffer,0) to wait until a character appears in the keyboard buffer. 

• “Typing test (checking keys)” uses ?key and ?kshift, as well as detect(\key,0) – note here 

that every querycode (such as “?key”) has a corresponding inputcode (such as “\key”). 

• “Iteration game (Collatz sequence)” displays on the Canvas (rather than the Console) a number 

being typed in.  This is tricky, because the user might want to edit the number as they go (i.e. using 

the backspace key to delete digits), which the keyboard buffer can handle, but that means that the 

number has to be repeatedly redrawn (rather than just being extended).  So the box command is 

used to clear the relevant area, and read(0) to show the contents of the keyboard buffer. 

• “Throwing sponges at a moving face” and “Arcade shooting game” detect left mouse clicks and 

mouse coordinates. 

• “Colouring cells” uses detect(\mousekey,5000) to be able to identify different kinds of mouse 

clicks, while also waiting for the ESCAPE key. 

• “Snake (classic game)” detects different key presses to determine how the snake should move. 

• “Drawing to the mouse” detects mouse clicks and locations, setting colour according to the 

horizontal position of the click. 

• “Painting application” detects mouse clicks and locations, setting brush width according to the 

horizontal position of the click, and colour according to the pixel where the click occurs. 
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