
 The Turtle System, University of Oxford www.turtle.ox.ac.uk 1

Turtle Python 3 – Introducing Recursion

1. A Triangle Program and Function

In the “Spirals and Shapes” document, we developed a program similar to the following one, which draws

an equilateral triangle whose sides are length (256):

forward(256)
right(120)

forward(256)

right(120)

forward(256)

right(120)

Importantly, after this program finishes running, the Turtle will be back in exactly the place where it started,

with both its X and Y coordinates shown as “500” just to the right of the “RUN” button:

We also saw how such a sequence of commands can be put inside a function, with the length of the side as

a parameter called size. If we convert the program above accordingly, we obtain:

def triangle(size):

 forward(size)

 right(120)

 forward(size)

 right(120)

 forward(size)
 right(120)

triangle(256)

Here the function is defined in the first 7 lines, beginning with the word def and including all the indented

lines. Then the main program consists of the single instruction triangle(256), which calls the triangle

function with a parameter value of 256. This then produces exactly the same graphical effect as the previous

program, as shown above.

 Why is changing the program like this useful? Well, one answer, as we saw in “Spirals and Shapes”,

is that our function is far more versatile than the instructions in the original program, because we can use

it to draw triangles of lots of different sizes by varying the size parameter. But we’re now going to explore

a more exciting possibility that opens up once we have such a versatile function to play with.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 2

2. Introducing Recursion – and an Instructive Error

Suppose, then, that we take our program and change it by adding a single line, as follows:

def triangle(size):

 forward(size)

 triangle(size/2) # this is the new line
 right(120)

 forward(size)

 right(120)

 forward(size)

 right(120)

triangle(256)

When we click on “RUN”, the result will be initially disappointing:

To investigate what’s going on, we can take advantage of the Turtle System’s ability to output text without

affecting the graphical output of a program, by adding a line each at the beginning and end of the function:

def triangle(size):

 print('Entering with parameter',size)

 forward(size)
 triangle(size/2) # this is the new line

 ...

 right(120)

 print('Exiting with parameter',size)

This time the program will run for a much longer time before producing the error message, because it is

outputting so much text to the Console. To view the entire output, click on the “Output” tab, at the bottom

of the Turtle window just to the right of

the “Canvas & Console” tab. Scrolling up

to the top, you will see what is displayed

here – showing that the function is being

entered in turn with parameters 256,

128, 64, 32, 16, 8, 4, 2, 1, 1 again, and

then repeatedly with a parameter of 1, on

and on for ever. Why is this happening?

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 3

The explanation for the sequence 256, 128, … 2, 1 is very straightforward, because the fourth line

of the function – triangle(size/2) – clearly calls the triangle function itself, with half the current size

parameter. So when the function is entered with a value of 256, it first prints “Entering with parameter

256”, then moves the Turtle forward by 256 units, then in effect issues the instruction triangle(128).

So now the function is entered with a value of 128, and it accordingly prints “Entering with parameter 128”,

moves the Turtle forward by 128, and in effect issues the instruction triangle(64), and so on … Overall,

the Turtle moves forward 256+128+64+32+16+8+4+2+1 units – a total of 511 units – which explains why we

just see a vertical line disappearing off the top of the Canvas.

When we get to the size value of 1, we might expect that the triangle function will now be called

with a parameter of 0.5, but this is not possible, because the Turtle System operates only with whole

numbers (i.e. integers). So when size is equal to 1, the instruction triangle(size/2) instead calls the

function with the rounded value of “1/2” – and this, being 0.5, rounds up to 1. So now we have in effect

the instruction triangle(1) being issued again, and this then repeats on, and on, and on …

But the program does not carry on indefinitely, because although we see lots of new instances of

the triangle function starting up, we never see any of them finishing: the output “Exiting with parameter …”

never appears. And every new instance makes a demand on the Turtle System’s memory – in particular, on

something called the “subroutine return stack”, which keeps track of where each function call should return

to once it has been completed. In these circumstances, it is obviously not possible for any practical system

to keep an infinite number of functions running simultaneously. So eventually, the system detects an

overload, and delivers the error message “Subroutine return stack overflow – probable cause is

unterminated recursion”. If you see this, it does not mean that the Turtle System is malfunctioning! What

it means is that you have very likely just run a function which is recursive – i.e. calls itself – but without

inserting an adequate termination condition. That is exactly the correct diagnosis in the present case.

3. A Termination Condition, and Successful Recursion

You might now be able to work out for yourself how the function needs to be changed to avoid this

unterminated recursion: the most natural method is to avoid recursion when the size gets too small. And

in fact there is no point anyway in trying to draw a triangle with a size parameter of 1, because at that stage

we are dealing with a single pixel of the Canvas. So we change our recursive triangle program as follows,

using a conditional (i.e. “if”) instruction – and notice how all of the commands that are being made

conditional on size being greater than 1 are indented below the “if size>1:” line:

def triangle(size):

 print('Entering with parameter',size)

 if size>1: # this avoids recursion when size is 1

 forward(size)
 triangle(size/2) # this is the recursive call

 right(120)

 forward(size)

 right(120)

 forward(size)

 right(120)
 print('Exiting with parameter',size)

movexy(-100,150) # move the starting point

triangle(256)

Now the recursion of the function will be limited, taking size parameters of 256, 128, 64, 32, 16, 8, 4, 2, and

1 in turn, but never attempting to draw anything – or to make any further recursive call – when the value

of size is 1. Notice also that a new line has been inserted in the main program, which simply shifts the

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 4

starting point of the big triangle 100 units to the left and 150 units down – this will

make the pattern more central and avoid the initial vertical line extending off the

top of the Canvas. When we run this new version of the program, we will see the

pattern shown at the right here. And if we look at the “Output” tab, we will see

that although the various triangle calls started with the parameter size being (in

order) 256, 128, 64, 32, 16, 8, 4, 2, and finally 1, they finished in the opposite order,

so they were effectively “last in, first out”. Looking at the pattern, this indeed

makes sense: the 256-triangle was started but only one-third drawn, then “put on

hold” while the 128-triangle was started and one-third drawn, then that was put

on hold while the 64-triangle was started and one-third drawn, and so on.

Eventually the 2-triangle was started and one-third drawn, then – in effect –

triangle(1) was called, but that did nothing more than print “Entering with

parameter 1” and “Exiting with parameter 1”. This exit released the hold on the 2-

triangle, which thus became free to finish and exit. This likewise released the hold

on the 4-triangle, and so on all the way to the 64-triangle, the 128- triangle and finally the 256-triangle.

If you are familiar with Dr Seuss’s character The Cat in the Hat, then you might find him a useful

metaphor for how this all works. He wears a very big top hat on his head, under which is perched a smaller

cat, Little Cat A. Little Cat A also wears a (relatively) big top hat, with Little Cat B perched on his head, and

so on through Little Cats C, D, E, F, G, and H. Each Cat follows the instructions in the triangle function, using

whatever parameter he has been given, with the instruction triangle(size/2) interpreted as meaning

that he should take off his hat and wait while telling the Little Cat on his head to jump down and draw a

triangle of half the size of his own. The Cat in the Hat starts off following the instructions with a parameter

of 256, draws the first side of his triangle, then takes off his hat and tells Little Cat A to follow the same

instructions with a parameter of 128. Little Cat A likewise draws the first side of his triangle (length 128),

then takes off his hat and tells Little Cat B to follow the same instructions with a parameter of 64, and so

on. Eventually we get to Little Cat G with a parameter of 2, who draws a side of length 2, takes off his hat

and tells Little Cat H to follow the same instructions with a parameter of 1. At this point, when Little Cat H

has just jumped off the head of Little Cat G to start his work, all of the other Cats are patiently waiting,

having got only one third of the way through their respective triangles. But now Little Cat H looks at the

instructions, and sees that because his parameter is 1 he doesn’t actually have to draw anything at all. So

his work is done, he jumps back onto the head of Little Cat G, who is now free to put his hat back on and

continue drawing his triangle of side 2. One he finishes, he jumps back onto the head of Little Cat F, who is

then free to put his hat back on and continue drawing his triangle of side 4, and so on.

We can now add a second and third recursive call (and remove the print statements, which if left in

will from now on seriously slow down the program):

def triangle(size):

 if size>1:

 forward(size)

 triangle(size/2) # first recursive call
 right(120)

 forward(size)

 triangle(size/2) # second recursive call

 right(120)

 forward(size)

 triangle(size/2) # third recursive call
 right(120)

movexy(-100,150)

triangle(256)

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 5

The pictures below show the result that we get with the first two recursive calls, and then with all three.

We seem to have come a very long way from the program we had at the end of §1 above, but all we have

done is to add one conditional test – to see whether size is greater than 1 – and three recursive calls that

are made if the test is positive. If you want to check out the main steps of this development again, you can

follow it through by loading the four relevant programs from Examples menu 2, namely “Simple triangle”,

“Triangle function”, “Triangle function with limit”, and “Recursive triangles”. The first three of these all

produce an identical single triangle as output, while the last – by adding just the three recursive calls –

produces the final image above, which looks remarkably like a so-called “Sierpinsky triangle” (to which we’ll

be returning in a future document). If we use a FOR loop within the triangle function, moreover – which we

did near the end of the “Spirals and Shapes” document – we can produce this with a single recursive call:

def triangle(size):

 if size>1:

 for count in range(3):

 forward(size)

 triangle(size/2) # just one recursive call
 right(120)

movexy(-100,150)

triangle(256)

It seems remarkable that we can get such an intricate and beautiful pattern by adding just one line to a

program that draws a simple triangle!

Appendix: A Peek at Memory

You might reasonably wonder how a computer manages to handle this sort of recursive program, because

it seems that at one stage we have nine different versions of the triangle routine all running at the same

time (in the Dr Seuss analogy, these are being executed by The Cat in The Hat, and Little Cats A, B, C, D, E,

F, G, and H). How does the computer manage to keep track of nine different parameter values (respectively

256, 128, 64, 32, 16, 8, 4, 2, and 1), and nine different – constantly changing – count variables?

 To gain some quick insight into this matter, and without getting seriously technical, we can take a

peek “under the bonnet” of the Turtle System, to look at the workings of the Turtle Machine on which it

runs. This is a virtual machine – in other words, a simulation of an imagined hardware chip – which is

specially designed to be relatively easy to understand. And if we switch into Machine Mode (from the

“View” menu), we can see both its “machine code” and memory contents:

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 6

Here on the right, in the “PCode” tab, we see the machine code into which the Python program on the left

has been compiled (i.e. translated). At the top of the tab, you’ll also see that there is a “Trace” facility, which

enables us to see what happens as the program is run, step by step. Without the recursive call, this program

takes 139 steps in total; but with the recursive call, it takes altogether 449,413 steps! We won’t try to delve

into the mysteries of machine code here, though it’s a very interesting topic in its own right, and the Turtle

System is specially designed to facilitate such investigations. Instead, let us look at the memory of the virtual

machine as it stands when a triangle of size 8 is being drawn for the very last time:

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 7

Here lines 2 and 3 of the program contain a conditional instruction to “dump” the current memory content

into the “Memory” display whenever the triangle routine is called with size equal to 8. Thus when the

program finishes, we are left with the very last snapshot of memory to be taken in that situation. On the

right we can see two separate displays, one of the “Memory Stack” – here from locations 0 to 39 – and the

“Memory Heap” – here from locations 100000 to 100039. The latter is almost empty, but the first three

locations (100000 to 100002) contain the numbers 100034, 100003 and 100003 – these are the three

pointers that keep track of the (circular) keyboard buffer discussed in the document on “Animation and User

Input”, and which here extends from location 100003 to 100034 inclusive (i.e. 32 locations altogether).

 For the purpose of understanding how recursion works, however, we are much more interested in

the Memory Stack display at the top, whose contents are listed below. (But don’t worry at all about not

understanding all of this, which is inevitable – the details are for the inquisitive who want to delve deeper!)

 Location 0: 14 – points to the Turtle attribute array

 Location 1: 100000 – points to the keyboard buffer

 Locations 2 to 11: All 0, but would be used for file pointers if any files were open

 Location 12: 30 – the subroutine pointer for subroutine 1 (i.e. the triangle function)

 Location 13: 0 – the pointer for transfer for a function result (not relevant to this program)

 Location 14: 6 – the number of attributes in the Turtle attribute array

 Locations 15 to 20: Current values of the 6 Turtle attributes: turtx, turty, turtd, turta, turtt, and turtc.

 Locations 21 and 22: 256 and 2 – memory being used by first call of subroutine, i.e. triangle(256)

 Locations 23 and 24: 128 and 2 – memory being used by second call of subroutine, i.e. triangle(128)

 Locations 25 and 26: 64 and 2 – memory being used by third call of subroutine, i.e. triangle(64)

 Locations 27 and 28: 32 and 2 – memory being used by fourth call of subroutine, i.e. triangle(32)

 Locations 29 and 30: 16 and 2 – memory being used by fifth call of subroutine, i.e. triangle(16)

 Locations 31 and 32: 8 and 0 – memory being used by sixth call of subroutine, i.e. triangle(8)

 Locations 33 and 34: 4 and 3 – memory previously used by seventh call of subroutine, i.e. triangle(4)

 Locations 35 and 36: 2 and 3 – memory previously used by eighth call of subroutine, i.e. triangle(2)

 Locations 37 and 38: 1 and 0 – memory previously used by ninth call of subroutine, i.e. triangle(1)

Notice that the different calls of the triangle routine have each been allocated two memory locations, one

for the size parameter and one for the count variable. The values in the odd-numbered locations from 21

to 37 are easily explained because the size parameters are respectively 256, 128, 64, 32, 16, 8, 4, 2 and 1.

The even-numbered locations from 22 to 30 all contain 2 because this is the value of the count variable

during the final iteration of a FOR loop that counts through the values 0, 1 and 2. Coming now to location

32, this is 0 because when our memory snapshot was taken, the triangle routine with size equal to 8 had

only just been entered – the loop hadn’t even started, so count had its default value of 0.

 What of locations 34, 36, and 38? Notice that in the Memory Stack display all of the locations from

33 to 38 are shaded red and shown with a “?” above the numeric contents – this indicates that when the

memory snapshot was taken, these memory locations were not “live”. They therefore reflect the final

values from previous (but now ended) calls to the triangle routine, in which the size parameter took the

values 4, 2 and 1 respectively. In the first two of these cases, we can see that the count variable ended up

equal to 3 (because in a FOR loop, termination takes place when the counting variable reaches the limit

value). But in the last case, where size had the value 1, count (in location 38) remains with its default value

of 0, because when size is not greater than 1, no loop takes place.

 Finally, notice that when the snapshot takes place, the subroutine pointer at location 12 is equal to

30, so it is pointing just before the memory locations that are storing the current values of size and count

(at locations 31 and 32). It is this pointer that enables the Turtle Machine to identify which specific copies

of size and count are currently in use, thus keeping track of the nine different triangle versions.

http://www.turtle.ox.ac.uk/

