
 The Turtle System, University of Oxford www.turtle.ox.ac.uk 1

Turtle Machine 2 – More Looping Structures

This document explains how three looping structures are handled by the “Turtle Machine”, starting with

the Pascal REPEAT and FOR loops, before considering the more complex FOR … in RANGE structure of

Python. The previous document, “Turtle Machine 1 – Pcode and the Stack”, has already explained how the

Python WHILE loop operates, and the Pascal WHILE loop is compiled in exactly the same way.

1. Pascal REPEAT Loop
In Pascal, the “Spiral of colours” program is implemented using a REPEAT rather than WHILE loop, giving

rise to a different PCode structure, as follows (and shown as usual without PCode lines 1 and 2). One other

– very minor – point is that here memory location 20 is used for the variable “lineLength”, instead of 21 –

this reflects a subtle difference in how Python and Pascal handle subroutines (since Python standardly

expects a function to return a value – and needs a location for this – whereas Pascal procedures do not).

PROGRAM ColourSpiral; 3 JUMP 8 Jump to start of main program – line 8

VAR lineLength: integer; (lineLength will be stored at location 20)

 Procedure lineTurn; 4 PSSR 1 “Push” subroutine number = 1

 Begin

 forward(lineLength); 5 LDVG 20 FWRD Load global variable 20, move forward

 right(60); 6 LDIN 60 RGHT Load integer 60, turn right

 End; 7 PLSR RETN “Pull” subroutine number, and return

BEGIN

 blank(black); 8 LDIN 0 BLNK Load integer 0 (Black), and blank Canvas

 forward(15); 9 LDIN 15 FWRD Load integer 15, move forward

 thickness(27); 10 LDIN 27 THIK Load integer 27, thickness

 lineLength := 20; 11 LDIN 20 STVG 20 Load integer 20, store in location 20

 repeat 12 LDIN 40 RAND Load 40, replace with random number 0-39

 randcol(40); INCR Increment number (to 1-40)

 RGB COLR Convert to native RGB code, set Turtle colour

 lineTurn; 13 SUBR 4 Call subroutine at line 4

 pause(50); 14 LDIN 50 WAIT Load integer 50, pause 50 milliseconds

 lineLength := lineLength+10 15 LDVG 20 LDIN 10 Load global location 20, load integer 10

 PLUS STVG 20 Add the two values, store in location 20

 until lineLength>500 16 LDVG 20 LDIN 500 Load global location 20, load integer 500 …

 MORE Is the former more than the latter?

 IFNO 12 If not, jump back to line 12

END. 17 HALT But if so, halt

Note that there is no specific PCode instruction corresponding to the Pascal instruction “repeat” – this

simply marks the point where the loop starts, and to which control returns after the test at PCode line 16,

assuming that the “until” condition is currently false. This is therefore a simpler structure than a “while”

loop, requiring just one jump, and one test which occurs after the loop, so that the loop is always executed

at least once (unlike in the case of “while”, where the test occurs before the loop).

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 2

2. Pascal FOR Loop
Here is the “Spinning triangle pattern” program from the Pascal menu “Examples 1 – drawing and counting

loops”, showing the Trace display as the program runs round the first loop:

The FOR loop is set up by loading the first and terminal values onto the Evaluation Stack, and then swapping

them round so that the terminal value (i.e. 300) is below the first value (i.e. 1) on the Stack:

36 4.1 LDIN 1 | 1

37 4.3 LDIN 300 | 300 1

38 4.5 SWAP | 1 300

From now on, the current value of the loop variable (called “i” in this case, and currently equal to 1) will be

at the top of the Stack whenever we get to the start of line 5 of the PCode, which is the beginning of the

loop section. Likewise the terminal value (300 in this case) will be the second value on the Stack. Note also

that the terminal value will be preserved – unchanged – on the Stack throughout the loop.

The loop section begins with the current value of the loop variable i being duplicated and stored into

the relevant memory location (here 19):

39 5.1 DUPL | 1 1 300

40 5.2 STVG 19 | 1 300

This updates the loop variable value in memory. Now the terminal value (i.e. 300) – which is in

Stack position 2 – is copied to the top of the Stack using the “PICK 2” instruction:

41 5.4 PICK 2 | 300 1 300

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 3

“LSEQ” then tests whether the second Stack value (here 1) is less than or equal to the first Stack

value (i.e. 300). This leaves 0 on the Stack if it is not, or –1 on the Stack if it is. Notice here that

Pascal and BASIC represent True with the value –1, unlike Python which represents True as 1.

(Python’s choice seems more natural, but the advantage of representing True as –1 is to enable

bitwise operators to double as Boolean operators, because the bitwise complement of 0 is –1.)

If the result of the LSEQ comparison is 0 (i.e. the loop variable value has become greater than

300), then control branches to PCode line 9:

42 5.6 LSEQ | –1 300

43 5.7 IFNO 9 | 300

When this eventually happens, line 9 contains the single instruction “DROP” and line 10 is “HALT”.

“DROP” has the effect of removing the value of 300 from the Stack before halting – it is important

to “clean up” in this way after the loop has completed, because the loop might be part of a larger

program in which preserving Stack structures is crucial to their operation.

The first Pascal command within the body of the loop is “forward(i*3)”, which involves

loading the loop variable i, then multiplying it by 3 and executing the FWRD command:

44 6.1 LDVG 19 | 1 300

45 6.3 LDIN 3 | 3 1 300

46 6.5 MULT | 3 300

47 6.6 FWRD | 300

The second Pascal command within the body of the loop is “right(121)”:

 48 7.1 LDIN 121 | 121 300

49 7.3 RGHT | 300

The loop now ends by loading the current value of the loop variable i and incrementing it (to 2),

then jumping back to line 5 with the current and terminal values correctly placed on the Stack:

50 8.1 LDVG 19 | 1 300

51 8.3 INCR | 2 300

52 8.4 JUMP 5 | 2 300

Note that line 5 will then duplicate and store the current value of the loop variable, as follows:

53 5.1 DUPL | 2 2 300

54 5.2 STVG 19 | 2 300

The loop will continue until eventually the current value of the loop variable reaches 301. At this

point, execution of the program will terminate like this, after a jump to PCode line 9:

4239 5.1 DUPL | 301 301 300

4240 5.2 STVG 19 | 301 300

4241 5.4 PICK 2 | 300 301 300

4242 5.6 LSEQ | 0 300

4243 5.7 IFNO 9 | 300

4244 9.1 DROP

4245 10.1 HALT

As noted earlier, “DROP” has the effect of “cleaning up” before termination, by removing the now

redundant terminal value of 300 from the Stack.

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 4

3. Python FOR … in RANGE Loop

The Python FOR loop is significantly more complicated than the Pascal FOR loop, because it is more versatile

– in particular, as well as a first value f and a terminal value t, it can also involve an arbitrary step value s

(which could be specified by a variable), whereas Pascal can only either increment its loop variable by 1

each time (e.g. for n := 1 to 100) or decrement it by 1 each time (e.g. for n := 23 downto 0). The “Nested

FOR loops” program in the first “Examples” menu provides an illustration of this complexity.

Notice that here we have one FOR loop “nested” inside another, with the relevant structure being as follows

(and omitting most of the early instructions within the outer loop):

for blotCount in range(30):

 direction(blotCount*36)

 ...

 for circleCount in range(56,201,8):

 circle(circleCount)

 back(260)

 pause(200)

The first loop – “for blotCount in range(30):” – gives blotCount in turn each value from 0 to 29 inclusive.

The second – “for circleCount in range(56, 201, 8)” – starts circleCount with the value 56, then increments

it repeatedly by 8 until it reaches or exceeds 201 (thus its last loop will be with 200). Note that in these

range specifications, “range(30)” is short for “range(0, 30, 1)”. So the general form is:

for v in range(first,terminal,step):

Each of the three parameter values may be specified numerically (as here) or using a variable, but that value

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 5

will remain constant during the loop, even if has been specified using a variable which changes in value

during the loop. This helps to explain why Turtle Python implements these loops in such a way that the

specified values are preserved on the Stack.

Another significant complication in Python’s FOR … in RANGE loop is that its behaviour can vary

significantly depending on the nature of the step value, which can be negative, e.g.:

for v in range(365,0,-7):

 print(v)

which counts down 365, 358, 351, … , 15, 8, 1. Notice that here the loop terminates when the loop variable

v becomes less than or equal to the terminal value of 0, whereas a loop with a positive step value terminates

when the loop variable becomes greater than or equal to the terminal value. But since the step value might

be specified using a variable, we also have to face the possibility that the step value will be 0 – what then?

In that case, the loop is terminated immediately.

 To see how all this works in detail, let’s look here at a program that involves just a single loop similar

in structure to the inner (more complex) loop of the “Nested FOR loops” example:

for v in range(56,201,8):

 print(v)

When run, this program simply outputs the sequence of numbers 56, 64, 72, 80, 88, 96, 104, 112, 120, 128,

136, 144, 152, 160, 168, 176, 184, 192, and 200, each on a new line – click on the “Output” tab to see them.

Afterwards, v will be equal to 208, which exceeds the terminal value 201 and thus terminates the loop. As

with the Pascal FOR loop, we can explore what’s going on using the Trace display (but notice that the Trace

display only shows up to three values on the Evaluation Stack – here we see all of them).

33 3.1 LDIN 56 | 56 Loads begin value b = 56

34 4.1 LDIN 201 | 201 56 Loads finish value f = 201

35 5.1 LDIN 8 | 8 201 56 Loads step value s = 8

36 5.3 ROTA | 56 8 201 Rotates third value (56) up to the top

37 6.1 DUPL | 56 56 8 201 Duplicates top value on the Stack

38 6.2 STVG 19 | 56 8 201 Stores top value into variable v

39 6.4 PICK 3 | 201 56 8 201 Copies third value to the top

40 6.6 PICK 3 | 8 201 56 8 201 Copies third value to the top

41 6.8 DUPL | 8 8 201 56 8 201 Duplicates top value on the Stack

42 6.9 IFNO 12 | 8 201 56 8 201 If step value s=0, jump out of loop

43 7.1 LDIN 0 | 0 8 201 56 8 201 Load 0 for comparison with s

44 7.3 MORE | 1 201 56 8 201 Is the step value s>0?

45 7.4 IFNO 9 | 201 56 8 201 If not, jump to line 9

46 7.6 LESS | 1 8 201 Is v (currently 56) less than t (201)?

47 7.7 IFNO 13 | 8 201 If not, jump out of loop

48 8.1 JUMP 10 | 8 201 Jump over line 9

Line 9 simply takes the form “MORE IFNO 13”, and this replaces the conditional branch “LESS IFNO 13”

(in cycles 46 and 47) for the case where the step value in negative. Either way, this tests the appropriate

condition for whether the loop should continue, and if so, the code continues from line 10 whether the step

value is positive or negative:

49 10.1 LDVG 19 | 56 8 201 Load the global location 19 (i.e. variable v)

50 10.3 ITOS | 200035 8 201 Convert integer to string at Heap address

http://www.turtle.ox.ac.uk/

 The Turtle System, University of Oxford www.turtle.ox.ac.uk 6

51 10.4 WRIT | 8 201 Print the value of v to the Console

52 10.5 LSTR #13#10 | 200038 8 201 Load end of line and new line string

53 10.9 WRIT | 8 201 Print new line on Console

54 10.1 HCLR | 8 201 Clear the Heap of string leftovers

55 11.1 DUPL | 8 8 201 Duplicate the step value s

56 11.2 LDVG 19 | 56 8 8 Load the loop variable v

57 11.4 PLUS | 64 8 201 Add step value s to loop variable v

58 11.5 JUMP 6 | 64 8 201 Jump back to continue the loop

59 6.1 DUPL | 64 64 8 201 (compare with cycle 37 above)

Thus the loop continues onto the next iteration, and it carries on this way until it is terminated by the

conditional branch at PCode 7.7 (see cycle 47 above).

Termination at that point happens when v reaches 201 or more, at which point a jump is made to line

13. Notice that we also saw a potential exit from the loop at PCode 6.9 (see cycle 42 above), which results

in a jump to line 12 if the step value s is zero. The final three lines of PCode – 12 to 14 – contain six rather

monotonous instructions:

 12.1 DROP

 12.2 DROP

 12.3 DROP

 13.1 DROP

 13.2 DROP

 14.1 HALT

In the case of the Pascal FOR loop, we saw a single “DROP” instruction being needed at the end of the loop,

to “clean up” the Stack once the terminal value had become redundant. With a Python FOR … in RANGE

loop more cleaning up is needed, because if the loop is exited from PCode 6.9, there are no fewer than five

redundant values on the Stack, while if it is exited from PCode 7.7 (or 9.2 if the step value is negative), there

are two redundant values on the Stack. The necessary cleaning up is therefore achieved by jumping to line

12 in the former case (so that five “DROP”s occur before “HALT”), and to line 13 in the latter (so that two

“DROP”s occur before “HALT”).

 As noted earlier, this sort of “cleaning up” is essential when a loop occurs as part of a larger program.

In the “Nested FOR loops” program which we saw above, for example, one FOR loop occurs within another,

and both of these loops store their step and terminal values on the Stack. Thus if the inner loop terminated

without cleaning up and removing its own redundant values from the Stack, those values would remain

there and wreck the operation of the outer loop by being mistaken for its own step and terminal values.

http://www.turtle.ox.ac.uk/

