
Text-based programming is notorious-

ly difficult, both to teach and learn. But

when I was teaching programming to

novices at Leeds University in the

1990s, I found that by far the biggest

problem was syntax errors. These

were hugely time-consuming, as help-

ers rushed from student to student

trying to identify the (mostly trivial)

mistakes. Practical sessions often

seemed like an obstacle course,

“success” being defined more by stub-

born endurance in the face of irritating

and confusing obstructions than by

any delight of creative achievement.

No doubt this will be a familiar scenar-

io for many readers!

The Turtle System aims to solve this

and the other three big problems listed

at the left. The last of them – deriving

from our natural preference for visual

effects – has a well-known solution:

Seymour Papert’s wonderful idea of

Turtle Graphics. Papert’s original ver-

sion used his own language Logo,

specially designed for the purpose,

but add-on Turtle units have been

created for many other languages,

and are very widely used in teaching.

This suggests the idea of a simple,

integrated environment designed to

make Turtle Graphics as easy as pos-

sible, using a general programming

language of the

user’s choice.

Keeping things

simple requires a “barebones” version

of the relevant language, combining

standard “core” features (e.g. con-

stants, variables, arrays, subroutines,

conditional and looping structures,

operators and bracketing) with special

features designed to make graphics

and interaction straightforward. The

core features allow standard program-

ming techniques to be taught perfectly

well. Built-in commands for graphics

(e.g. circle, colour, forward, print),

canvas control (e.g. fill, pause,

pixcol, update), and simple access

to keyboard and mouse events, make

it very easy for beginners to get start-

ed and have fun!

Simplifying the language brings anoth-

er great benefit, by enabling error

messages to be more precisely target-

ed, because restricting users to a

small number of core structures

makes their mistakes easier to identify

and correct. The current version of

Turtle Pascal, for example, has

around 150 syntax error messages,

designed to point out exactly where

the problem lies, and giving a precise

hint for correction. After introducing

my earlier version at Leeds, I found

students were able to fix the vast

majority of their syntax

errors without needing

any further help at all.

The barebones ap-

proach also makes it

feasible to offer a choice

of languages (e.g.

BASIC, Java, Pascal

and Python), enabling

pupils to compare the

same algorithm in differ-

ent languages, and ap-

Visual drag-and-drop program-

ming systems – notably MIT’s

Scratch – have proved extremely

popular at primary level. Prior pro-

gramming with Scratch should

make text-based programming

easier, by consolidating some es-

sential concepts (e.g. variables

and loops). But experience sug-

gests that crossing the gap to textu-

al coding is still a major challenge

for both teacher and pupils, involv-

ing at least four difficult problems:

 Choice of language.

 Complications setting up and

starting to program.

 Coping with syntax errors.

 Difficulty understanding non-

visual program effects.

Programming language debates

have gone on for decades: should

you start with a language de-

signed for teaching (like BASIC or

Pascal), or with a commercially

popular language (like Java or

Python)? Industrial-strength sys-

tems can force novices to confront

complexities of language far too

soon, like the standard entry point

for any Java program (which could

almost be designed to intimidate

beginning teachers and pupils):

public static void main(String[] args){

Moreover, such systems are set

up more for textual than graphical

output, so structures like loops

and conditionals standardly get

introduced using numerical exam-

ples. But for most people, these

are far less easy to understand

than pictures, especially when

errors occur (see image right).

The Turtle System, with teaching resources and tools for setting and marking

coursework, is available free thanks to a new project at Oxford University co-

funded by the Department for Education. Peter Millican, Professor of Philosophy

at Hertford College, explains the principles behind the system he has developed.

SWITCHEDON www.computingatschool.org.uk 12

When the output is visual, errors are usually very easy to identify

A huge amount can be done with a

barebones language that has the

core features listed, despite its rela-

tive simplicity. Illustrative programs

provided with The Turtle System

include a traditional “Snake” arcade

game (65 lines), a “Paint” applica-

tion (102 lines), implementations of

famous cellular automata including

the “Game of Life” (49 lines), and an

infallible noughts-and-crosses pro-

gram that uses the AI technique of

recursive “minimax” analysis down

the search tree (116 lines). Though

a simple system, it can thus be

used to explore algorithms that

Computer Science undergraduates

would study in their upper years at

university.

Learning on a barebones lan-

guage is also entirely compatible

with moving on to an industrial-

strength version in due course

(e.g. when starting A-level, univer-

sity, or employment). Program-

ming in Turtle Pascal or Turtle

Python might not be quite the

same as programming in Delphi

Pascal or Python, but the basic

algorithmic syntax and logic re-

main identical.

It is much easier getting into a full-

strength system after the Turtle

experience, crossing one hurdle at

a time rather than having to learn

about both computational thinking

and a highly complex environment

at the same time. If you have any

questions, please contact me at

peter.millican@hertford.ox.ac.uk.

preciate how all are translated into the

same underlying “Turtle Machine”

code (see box above). This code too

is designed to be simple and under-

standable, making a virtual Turtle Ma-

chine easily portable to different devic-

es. Running their own apps and

games on the web and smartphones

is exciting for pupils, and helps rein-

force the vital lesson that algorithms

can be understood quite independent-

ly of specific languages or hardware.

The language choice problem raised

by the “Post-Scratch Gap” thus turns

out to have a natural solution: teach

pupils explicitly about the variety of

computer languages, using barebones

versions that make the comparison

easy to understand. Pupils are greatly

empowered by realising that program-

ming skills are so easily transferable,

and moving forward is far less intimi-

dating when problem style, program-

ming language, and working environ-

ment are changed one by one.

What pupils most need to learn is

computational thinking and solving

problems using algorithms. How those

algorithms may then be expressed in

some particular language is a second-

ary matter, because most computer

languages are fundamentally very

similar (far more than natural lan-

guages like English, French, German

etc). Once pupils have learned how to

express a simple algorithm within one

syntax (e.g. BASIC or Pascal), it

should be fairly easy for them to pick

up another (e.g. Java or Python) with-

in a day or two; moreover encounter-

ing this variety is, in itself, a valuable

learning experience.

In the next issue of SWITCHEDON, I

shall illustrate The Turtle System’s

use in practical teaching, but in the

meantime, it is freely available with

plenty of teaching resources for intro-

ducing the new National Curriculum

from www.turtle.ox.ac.uk. Please do

take a look.

13 SWITCHEDON www.computingatschool.org.uk

A growing snake in the traditional arcade game

In my first Turtle system (early 2000), programs were interpreted, i.e. read and

executed line-by-line, but it proved very difficult to give well-targeted error

messages within “nested” program structures (e.g. an “if” inside a “for” loop

inside a “repeat” loop). I therefore wrote a compiler, so that the user’s program

would be translated into a form of machine code (or “PCode”, short for

“portable code”), whose instructions are executed when the program runs.

Compiling involves a complete syntax analysis, helping to solve the error mes-

sage problem. This also made it easy to provide information for teachers (e.g.

about the structures and commands used), so we could check students’ pro-

grams against specified requirements and mark coursework very quickly – a

feature that will probably be appreciated by schoolteachers!

Compilation also opened a new possibility, of using the system to teach Com-

puter Science concepts in a novel way. The compiled PCode – essentially a

sequence of numbers – runs on a virtual (i.e. software-simulated) “Turtle Ma-

chine”. These codes include simple instructions for moving, turning, drawing

circles etc., and others for internal logic and memory operations. The latter

(e.g. handling variables and subroutines) are quite sophisticated, providing

plenty of potential for extension work (including finding ways to “hack” the Tur-

tle Machine without any risk).

But the basic drawing opera-

tions are very straightfor-

ward, and can be made open

to view and even “traced” as

they run, so all pupils can

learn about machine code by

seeing how their own pro-

grams are analysed and exe-

cuted in real time and with

real effects. Inspecting the machine code from a small compiled program

mailto:peter.millican@hertford.ox.ac.uk
http://www.turtle.ox.ac.uk

